~~
fﬁﬂ

BERKELEY
LAB

vensc

| am a NESAP Postdoctoral Researcher at NERSC with a focus on high
performance computing, numerical accuracy and artificial intelligence.

| specialize in helping teams of researchers make use of high performance
computing environments.

| am currently working to help port the TOAST software framework to the new
Perlmutter supercomputer and, in particular, port it to graphic processors (GPU).

https://github.com/hpc4cmb/toast

Can we have good GPU
performance, portability and
productivity?

High-level introduction to JAX

”~

f\‘ 2 What is JAX?

JAX is a Python library to write code that can run in parallel on:

CPU,

GPU (Nvidia and AMD),
TPU,

etc.

Developed by Google as a building block for deep-learning frameworks. Seeing
wider use in numerical applications including:

m Molecular dynamics,
m computational fluid dynamics,
m ocean simulation. 5

https://github.com/google/jax
https://github.com/google/jax/issues/2012
https://github.com/google/jax-md
https://github.com/google/jax-md
https://github.com/google/jax-cfd
https://arxiv.org/abs/2203.13760
https://veros.readthedocs.io/en/latest/

~”~

rreer| (il What does JAX look like?

It has a Numpy-like interface:

from jax import random
from jax import numpy as jnp

key = random.PRNGKey (0)
x = random.normal (key, shape=(3000, 3000), dtype=jnp.float32)

y = jnp.dot(x, x.T) # runs on GPU if available

”~

/\‘) How does JAX work?

Calls a just-in-time compiler when you execute your function with a new

problem size:

CPU
p— p GPU
Tracing ompiling an TPU

XLA optimizations

”~

/\‘ 2 JAX’s limitations

m Compilation happens just-in-time, at runtime,

m input sizes must be known to the tracer,

m loops and tests are limited inside JIT sections,

m no side effects and no in-place modifications,

m focus on GPU optimizations rather than CPU.

Is it worth it?

Porting the TOAST codebase to GPU

”~

::.ﬁ | TOAST

TOAST is a large Python application used to study the cosmic microwave
background.

It is made of pipelines distributed with MPI and composed of C++ kernels
parallelized with OpenMP.

Kernels use a wide variety of numerical methods including random number
generation, linear algebra and fast fourier transforms.

We ported one pipeline to GPU, from C++ to Numpy to JAX.

11

https://github.com/hpc4cmb/toast

”~

~rreee| (1] Porting the code (x7 reduction in lines of code)

build_noise_weighted
cov_accum_diag_hits
cov_accum_diag_invnpp
pixels_healpix
pointing_detector
filter_polynomial

filter_poly2D

scan_map

stokes_weights_|
stokes_weights_IQU
template_offset_add_to_signal
template_offset_project_signal

template_offset_apply_diag_precond

50

100
Lines of code

0 JAX B C++

150

200

~”~

reeeer| [t Performance per kernel (up to x17 speed-up)

stage_requirements_to_device @ OpenmP [JAX GPU
finalize |
template_offset_apply_diag_precond
template_offset_add_to_signal
pointing_detector |
build_noise_weighted |
pixels_healpix |
stokes_weights_IQU
template_offset_project_signal

0.00s 20.00s 40.00s 60.00s 80.00s
Cumulative runtime in seconds.

Should you use JAX in your project?

”~

:r_}‘ nl JAX’s strengths

| believe JAX is in a sweet spot for research and complex numerical codes:

m Focus on the semantic, leaves optimization to the compiler,
m single code base to deal with CPU and GPUs,

m immutable design is actually nice for correctness,

m easy to use numerical building blocks inside kernels.

15

”~

f\‘) Should you use JAX?

m Your code is written in Python,
m your code can be written with Numpy,
m your array sizes are not too dynamic,

m single-thread CPU is an acceptable fallback in the absence of GPU.

16

Thank you!

ndemeure@Ibl.gov

mailto:ndemeure@lbl.gov

